Isotopes of rhenium

Isotopes of rhenium (75Re)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
185Re 37.4% stable
186Re synth 3.7185 d β 186Os
ε 186W
186mRe synth 2×105 y IT 186Re
β 186Os
187Re 62.6% 4.12×1010 y β 187Os
Standard atomic weight Ar°(Re)

Naturally occurring rhenium (75Re) is 37.4% 185Re, which is stable (although it is predicted to decay), and 62.6% 187Re, which is unstable but has a very long half-life (4.12×1010 years).[4] Among elements with a known stable isotope, only indium and tellurium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope.

There are 36 other unstable isotopes recognized, the longest-lived of which are 183Re with a half-life of 70 days, 184Re with a half-life of 38 days, 186Re with a half-life of 3.7186 days, 182Re with a half-life of 64.0 hours, and 189Re with a half-life of 24.3 hours. There are also numerous isomers, the longest-lived of which are 186mRe with a half-life of 200,000 years and 184mRe with a half-life of 177.25 days.[5] All others have half-lives less than a day.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da)[6]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope
[n 7][n 8]
Spin and
parity[1]
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion[1] Range of variation
159Re 75 84 158.98411(33)# 40# μs 1/2+#
159mRe 210(50)# keV 20(4) μs p (92.5%) 158W (11/2−)
α (7.5%) 155Ta
160Re 75 85 159.98188(32)# 611(7) μs p (89%) 159W (4−)
α (11%) 156Ta
160mRe 177(15) keV 2.8(1) μs IT 160Re (9+)
161Re 75 86 160.97762(16) 440(1) μs p 160W 1/2+
161mRe 123.7(13) keV 14.7(3) ms α (93.0%) 157Ta 11/2−
p (7.0%) 160W
162Re 75 87 161.97590(22)# 107(13) ms α (94%) 158Ta (2)−
β+ (6%) 162W
162mRe 175(9) keV 77(9) ms α (91%) 158Ta (9)+
β+ (9%) 162W
163Re 75 88 162.972085(20) 390(70) ms β+ (68%) 163W 1/2+
α (32%) 159Ta
163mRe 120(5) keV 214(5) ms α (66%) 159Ta 11/2−
β+ (34%) 163W
164Re 75 89 163.970507(59) 719(89) s α (?%) 160Ta (2)−
β+ (?%) 164W
164mRe[n 10] −50(250) keV 890(130) ms β+ (97%) 164W (9,10)+
α (3%) 160Ta
165Re 75 90 164.967086(25) 1.6(6) s β+ (86%) 165W (1/2+)
α (14%) 161Ta
165mRe[n 10] 28(22) keV 1.74(6) s β+ (87%) 165W (11/2−)
α (13%) 161Ta
166Re 75 91 165.965821(95) 2.25(21) s β+ 166W (7+)
α 162Ta
167Re 75 92 166.962604(43)# 3.4(4) s α (?%) 163Ta 9/2−
β+ (?%) 167W
167mRe 131(13)# keV 5.9(3) s β+ (?%) 167W 1/2+
α (?%) 163Ta
168Re 75 93 167.961573(33) 4.4(1) s β+ 168W (7+)
α (0.005%) 164Ta
169Re 75 94 168.958766(12) 8.1(5) s β+ 169W (9/2−)
α (0.005%) 165Ta
169mRe 175(13) keV 15.1(15) s β+ (?%) 169W (1/2+,3/2+)
α (?%) 164Ta
170Re 75 95 169.958235(12) >1# s β+ 170W (8−,9−)#
170m1Re 73(17) keV 9.2(2) s β+ 170W (5+)
170m2Re 210.1(1) keV 130(10) ns IT 170Re (6,7,8,9)
171Re 75 96 170.955716(30) 15.2(4) s β+ 171W (9/2−)
172Re 75 97 171.955376(38) 55(5) s β+ 172W (2+)
172mRe[n 10] 110(50)# keV 15(3) s β+ 172W (7+)
173Re 75 98 172.953243(30) 2.0(3) min β+ 173W (5/2−)
174Re 75 99 173.953115(30) 2.40(4) min β+ 174W 3+#
174mRe 100(50)# keV 1# min
[>1 μs]
7+#
175Re 75 100 174.951381(30) 5.89(5) min β+ 175W 5/2−#
176Re 75 101 175.951623(30) 5.3(3) min β+ 176W (3+)
177Re 75 102 176.950328(30) 14(1) min β+ 177W 5/2−
177mRe 84.70(10) keV 50(10) μs IT 177Re 5/2+
178Re 75 103 177.950989(30) 13.2(2) min β+ 178W (3+)
179Re 75 104 178.949990(26) 19.5(1) min β+ 179W 5/2+
179m1Re 65.35(9) keV 95(25) μs IT 179Re (5/2−)
179m2Re 1822(50)# keV 408(12) ns IT 179Re (23/2+)
179m3Re 5408.0(5) keV 466(15) μs IT 179Re (47/2+,49/2+)
180Re 75 105 179.950792(23) 2.46(3) min β+ 180W (1)−
180m1Re 90(30)# keV >1# μs IT 180Re (4+,5+)
180m2Re 3561(30)# keV 9.0(7) μs IT 180Re 21−
181Re 75 106 180.950062(13) 19.9(7) h β+ 181W 5/2+
181m1Re 262.91(11) keV 156.7(19) ns IT 181Re 9/2−
181m2Re 1656.37(14) keV 250(10) ns IT 181Re 21/2−
181m3Re 1880.57(16) keV 11.5(9) μs IT 181Re 25/2+
181m4Re 3869.40(18) keV 1.2(2) μs IT 181Re (35/2−)
182Re 75 107 181.95121(11) 64.2(5) h β+ 182W 7+
182m1Re[n 10] 60(100) keV 14.14(45) h β+ 182W 2+
182m2Re 296(100) keV 585(30) ns IT 182Re (2)−
182m3Re 521(100) keV 0.78(9) μs IT 182Re (4−)
183Re 75 108 182.9508213(86) 70.0(14) d EC 183W 5/2+
183mRe 1907.21(15) keV 1.04(4) ms IT 183Re 25/2+
184Re 75 109 183.9525281(46) 35.4(7) d β+ 184W 3−
184mRe 188.0463(17) keV 177.25(7) d[5] IT (74.5%) 184Re 8+
β+ (25.5%) 184W
185Re 75 110 184.95295832(88) Observationally Stable[n 11] 5/2+ 0.3740(5)
185mRe 2124.1(4) keV 200(4) ns IT 185Re 25/2+
186Re 75 111 185.95498917(88) 3.7185(5) d β (92.53%) 186Os 1−
EC (7.47%) 186W
186mRe 148.2(5) keV ~2.0×105 y IT[n 12] 186Re (8+)
187Re[n 13][n 14] 75 112 186.95575222(79) 4.16(2)×1010 y[n 15] β[n 16] 187Os 5/2+ 0.6260(5)
187m1Re 206.2473(10) keV 555.3(17) ns IT 187Re 9/2−
187m2Re 1682.0(6) keV 354(62) ns IT 187Re 21/2+
188Re 75 113 187.95811366(79) 17.005(3) h β 188Os 1−
188mRe 172.0848(24) keV 18.59(4) min IT 188Re 6−
189Re 75 114 188.9592278(88) 24.3(4) h β 189Os 5/2+
189mRe 1770.9(6) keV 223(14) μs IT 189Re 29/2+
190Re 75 115 189.9618001(52) 3.0(2) min β 190Os (2)−
190mRe 204(10) keV 3.1(2) h β (54.4%) 190Os (6−)
IT (45.6%) 190Re
191Re 75 116 190.963123(11) 9.8(5) min β 191Os (3/2+)
191mRe 1601.5(4) keV 50.6(35) μs IT 191Re 25/2−
192Re 75 117 191.966088(76) 15.4(5) s β 192Os (0−)
192m1Re 159(1) keV 88(8) μs IT 192Re
192m2Re 267(10) keV <500 ms
193Re 75 118 192.967545(42) 3# min
[>300 ns]
5/2+#
193mRe 146.0(2) keV 69(6) μs IT 193Re (9/2−)
194Re 75 119 193.97074(22)# 5(1) s β 194Os 1−#
194m1Re 150(50)# keV 45(18) μs IT 194Re 4−#
194m2Re 285(40) keV 25(8) s β 194Os 11−#
194m3Re 833(33) keV 100(10) s β 194Os
195Re 75 120 194.97256(32)# 5(1) s β 195Os 5/2+#
196Re 75 121 195.97600(32)# 2.4(15) s β 196Os
196mRe 120(40)# keV 3.6(6) μs IT 196Re
197Re 75 122 196.97815(32)# 400# ms
[>300 ns]
5/2+#
198Re 75 123 197.98176(43)# 1# s
[>300 ns]
199Re 75 124 198.98419(43)# 250# ms
[>300 ns]
5/2+#
This table header & footer:
  1. mRe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    α:Alpha decay
    β+:Positron emission
    EC:Electron capture
    β:Beta decay
    IT:Isomeric transition
    p:Proton emission
  7. Bold italics symbol as daughter  Daughter product is nearly stable.
  8. Bold symbol as daughter  Daughter product is stable.
  9. () spin value  Indicates spin with weak assignment arguments.
  10. 1 2 3 4 Order of ground state and isomer is uncertain.
  11. Believed to undergo α decay to 181Ta
  12. Theoretically capable of β decay to 186Os
  13. primordial radionuclide
  14. Used in rhenium–osmium dating
  15. Can undergo Bound-state β decay with a half-life of 32.9 years when fully ionized
  16. Theorized to also undergo α decay to 183Ta

Rhenium-186

Rhenium-186 is a beta emitter and radiopharmaceutical that is used to treat glioblastoma,[7] is used in theranostic medicine[8] and has been reported to be used in synoviorthesis.[9]

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Rhenium". CIAAW. 1973.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Bosch, F.; Faestermann, T.; Friese, J.; et al. (1996). "Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry". Physical Review Letters. 77 (26): 5190–5193. Bibcode:1996PhRvL..77.5190B. doi:10.1103/PhysRevLett.77.5190. PMID 10062738.
  5. 1 2 Janiak, Ł.; Gierlik, M.; R. Prokopowicz, G. Madejowski; Wronka, S.; Rzadkiewicz, J.; Carroll, J. J.; Chiara, C. J. (2022). "Half-life of the 188-keV isomer of 184Re". Physical Review C. 106 (44303): 044303. Bibcode:2022PhRvC.106d4303J. doi:10.1103/PhysRevC.106.044303. S2CID 252792730.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. "Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma". academic.oup.com. Retrieved 2024-12-07.
  8. Mastren, Tara; Radchenko, Valery; Bach, Hong T.; Balkin, Ethan R.; Birnbaum, Eva R.; Brugh, Mark; Engle, Jonathan W.; Gott, Matthew D.; Guthrie, James; Hennkens, Heather M.; John, Kevin D.; Ketring, Alan R.; Kuchuk, Marina; Maassen, Joel R.; Naranjo, Cleo M.; Nortier, F. Meiring; Phelps, Tim E.; Jurisson, Silvia S.; Wilbur, D. Scott; Fassbender, Michael E. (2017). "Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam". Nuclear Medicine and Biology. 49. Elsevier BV: 24–29. doi:10.1016/j.nucmedbio.2017.02.006. ISSN 0969-8051.
  9. "Radiosynoviorthese (RSO) mit Rhenium-186 (Re-186)-Sulfid" (PDF). Retrieved 2024-12-07.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.