The Stars Portal

Introduction

Image of the Sun, a G-type main-sequence star, the closest to Earth

A star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and trace heavier elements. Its total mass mainly determines its evolution and eventual fate. A star shines for most of its active life due to the thermonuclear fusion of hydrogen into helium in its core. This process releases energy that traverses the star's interior and radiates into outer space. At the end of a star's lifetime, its core becomes a stellar remnant: a white dwarf, a neutron star, or—if it is sufficiently massive—a black hole.

Stellar nucleosynthesis in stars or their remnants creates almost all naturally occurring chemical elements heavier than lithium. Stellar mass loss or supernova explosions return chemically enriched material to the interstellar medium. These elements are then recycled into new stars. Astronomers can determine stellar properties—including mass, age, metallicity (chemical composition), variability, distance, and motion through space—by carrying out observations of a star's apparent brightness, spectrum, and changes in its position in the sky over time.

Stars can form orbital systems with other astronomical objects, as in planetary systems and star systems with two or more stars. When two such stars orbit closely, their gravitational interaction can significantly impact their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. (Full article...)

Selected star -

Sirius
Sirius
Photo credit: NASA and ESA

Sirius is the brightest star in the night sky. With a visual apparent magnitude of 1.46, it is almost twice as bright as Canopus, the next brightest star. The name "Sirius" is derived from the Ancient Greek Seirios ("scorcher"), possibly because the star's appearance was associated with summer. The star has the Bayer designation α Canis Majoris (α CMa, or Alpha Canis Majoris). What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B.

Sirius appears bright due to both its intrinsic luminosity and its closeness to the Earth. At a distance of 2.6 parsecs(8.6 ly), the Sirius system is one of our near neighbors. Sirius A is about twice as massive as the Sun and has an absolute visual magnitude of 1.42. It is 25 times more luminous than the Sun but has a significantly lower luminosity than other bright stars such as Canopus or Rigel. The system is between 200 and 300 million years old. It was originally composed of two bright bluish stars. The more massive of these, Sirius B, consumed its resources and became a red giant before shedding its outer layers and collapsing into its current state as a white dwarf around 120 million years ago.

Selected article -

Surface magnetic field of SU Aur (a young star of T Tauri type), reconstructed by means of Zeeman-Doppler imaging
Surface magnetic field of SU Aur (a young star of T Tauri type), reconstructed by means of Zeeman-Doppler imaging
Photo credit: user:Pascalou petit

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

The magnetic field of a star can be measured by means of the Zeeman effect. Normally the atoms in a star's atmosphere will absorb certain frequencies of energy in the electromagnetic spectrum, producing characteristic dark absorption lines in the spectrum. When the atoms are within a magnetic field, however, these lines become split into multiple, closely spaced lines. The energy also becomes polarized with an orientation that depends on orientation of the magnetic field. Thus the strength and direction of the star's magnetic field can be determined by examination of the Zeeman effect lines.

A star with a magnetic field will generate a magnetosphere that extends outward into the surrounding space. Field lines from this field originate at one magnetic pole on the star then end at the other pole, forming a closed loop. The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles.

Selected image -

Sunspots
Sunspots
Photo credit: NASA/TRACE

Sunspots are temporary phenomena on the surface of the Sun (the photosphere) that appear visibly as dark spots compared to surrounding regions. They are caused by intense magnetic activity, which inhibits convection, forming areas of reduced surface temperature. Although they are at temperatures of roughly 3,000–4,500 K, the contrast with the surrounding material at about 5,780 K leaves them clearly visible as dark spots, as the intensity of a heated black body (closely approximated by the photosphere) is a function of T (temperature) to the fourth power. If the sunspot were isolated from the surrounding photosphere it would be brighter than an electric arc. Sunspots expand and contract as they move across the surface of the sun and can be as large as 80,000 km (50,000 miles) in diameter, making the larger ones visible from Earth without the aid of a telescope.

Did you know?

  • ... that our galaxy is estimated to contain 200-400 billion stars, more than the number of humans that have ever lived?
  • ... Earth is the only planet not named after a Roman or Greek god?

Subcategories

To display all subcategories click on the ►


Stars
Stars by luminosity class
Stars by metallicity
Stars by spectral type
Stars by type
Stars with proper names
Lists of stars
Star types
Astronomical catalogues of stars
Star atlases
Coats of arms with stars
Star symbols
Stars in the Andromeda Galaxy
Star clusters
Fiction about stars
Stellar groupings
Hypothetical stars
Star images
Stellar dynamics
Sun
Star systems
Wikipedia categories named after stars
Star stubs
Sun
Atmospheric radiation
Solar calendars
Coats of arms with sunrays
Coats of arms with suns
Sun in culture
Day
Horizontal coordinate system
Missions to the Sun
Solar observatories
Solar phenomena
Solar alignment
Solar eclipses
Solar energy
Sun tanning
Sundials
Sun stubs
Galaxies
Astronomical catalogues of galaxies
Galaxies discovered by year
Fiction about galaxies
Galaxy clusters
Galaxy filaments
Galaxy superclusters
Lists of galaxies
Galaxy morphological types
Active galaxies
Barred galaxies
Dark galaxies
Dwarf galaxies
Elliptical galaxies
Field galaxies
Hypothetical galaxies
Galaxy images
Interacting galaxies
Irregular galaxies
Lenticular galaxies
Low surface brightness galaxies
Overlapping galaxies
Peculiar galaxies
Polar-ring galaxies
Protogalaxies
Ring galaxies
Seyfert galaxies
Spiral galaxies
Starburst galaxies
Supermassive black holes
Galaxy stubs
Wikipedia categories named after galaxies
Black holes
Fiction about black holes
Intermediate-mass black holes
Stellar black holes
Supermassive black holes
White holes
Supernovae
Fiction about supernovae
Historical supernovae
Hypernovae
Discoverers of supernovae
Supernova remnants

Selected biography -

Subrahmanyan Chandrasekhar, FRS (/ˌʌndrəˈʃkɑːr/ ; Tamil: சுப்பிரமணியன் சந்திரசேகர்; October 19, 1910 August 21, 1995) was an Indian-American astrophysicist who, with William A. Fowler, won the 1983 Nobel Prize for Physics for key discoveries that led to the currently accepted theory on the later evolutionary stages of massive stars. Chandrasekhar was the nephew of Sir Chandrasekhara Venkata Raman, who won the Nobel Prize for Physics in 1930.

Chandrasekhar's most notable work was the astrophysical Chandrasekhar limit. The limit describes the maximum mass of a white dwarf star, ~ 1.44 solar mass, or equivalently, the minimum mass above which a star will ultimately collapse into a neutron star or black hole (following a supernova). The limit was first calculated by Chandrasekhar in 1930 during his maiden voyage from India to Cambridge, England, for his graduate studies. In 1999, the NASA named the third of its four "Great Observatories" after Chandrasekhar. The Chandra X-ray Observatory was launched and deployed by Space Shuttle Columbia on July 23, 1999. The Chandrasekhar number, an important dimensionless number of magnetohydrodynamics, is named after him. The asteroid 1958 Chandra is also named after Chandrasekhar. American astronomer Carl Sagan, who studied Mathematics under Chandrasekhar, at the University of Chicago, praised him in the book The Demon-Haunted World: "I discovered what true mathematical elegance is from Subrahmanyan Chandrasekhar." From 1952 to 1971 Chandrasekhar also served as the editor of the Astrophysical Journal.

He was awarded the Nobel Prize in Physics in 1983 for his studies on the physical processes important to the structure and evolution of stars. Chandrasekhar accepted this honor, but was upset that the citation mentioned only his earliest work, seeing it as a denigration of a lifetime's achievement. He shared it with William A. Fowler.


Topics


WikiProjects

Wikipedia:WikiProject Astronomical objects Wikipedia:WikiProject Solar System
WikiProject Astronomical objects WikiProject Solar System


More science WikiProjects...

Things to do


Here are some tasks awaiting attention:


More science portals...

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.