Ochrophyte
Dense kelp forest with understorey at Partridge Point near Dave's Caves, Cape Peninsula
Dense kelp forest with understory at Partridge Point near Dave's Caves, Cape Peninsula
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Cavalier-Smith, 1986
Classes[1]

Incertae sedis:

Diversity
>20,000 species
Synonyms
  • Heterokontophyta van den Hoek et al., 1978
  • Ochrista Cavalier-Smith, 1986[3][4]
  • Stramenochromes Leipe et al., 1994[5]

Ochrophytes (also known as heterokontophytes and stramenochromes) are the photosynthetic stramenopiles, a group of eukaryotes characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, ochrophytes are characterized by their plastids enclosed by four membranes, with thylakoids organized in piles of three, and the presence of chlorophylls a, c, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or subphylum Ochrophytina within phylum Gyrista. Their plastid is of red algal origin.

Characteristics

The ochrophytes are photosynthetic stramenopiles. As such, their cells frequently display an anterior flagellum with straw-like tripartite hairs called mastigonemes, and a posterior smooth flagellum, a characteristic of the Stramenopila.[6][7] Due to comprising the entirety of stramenopile algae, they are also known as heterokontophytes or stramenochromes.[7]

Cell biology

Their cells contain chloroplasts (unless secondarily lost) that contain chlorophylls a and c as photosynthetic pigments, in addition to fucoxanthin.[6] These plastids are located within the membranes of the periplastidial endoplasmic reticulum (PER), which is often connected to the nuclear envelope. As a result, plastids are generally enclosed by four membranes. The tripartite flagellar hairs, characteristic of stramenopiles, are produced within either the PER or the nuclear envelope. In many ochropytes, one thylakoid differentiates into the girdle lamella, which runs around the periphery of the plastid, beneath the innermost membrane. The remaining thylakoids are arranged in stacks of three. Chlorophyll a binds to thylakoids, while the c pigment is present in the stroma.[7] Some groups contain species with leucoplasts, choroplasts that have lost photosynthetic capacity and pigments but presumably continue to play a role in the synthesis of aminoacids, lipids and heme groups.[7]

Chemical structure of fucoxanthin
Chemical structure of fucoxanthin

The most frequent accessory pigment in ochrophytes is the yellow β-carotene. The golden-brown or brown pigmentation in diatoms, brown algae, golden algae and others is conferred by the xanthophyll fucoxanthin. In the yellow-green or yellow-brown raphidophyceans, eustigmatophyceans and xanthophyceans, vaucheriaxanthin is dominant instead. These pigment combinations extend their photosynthetic ability beyond chlorophyll a alone. Additionally, xanthophylls protect the photosystems from high intensity light.[7]

Ochrophytes accumulate chrysolaminarin as storage product,[7] within cytoplasmic vesicles.[6] Cytoplasmic lipid droplets are also common.[7] They uniformly have tubular mitochondrial cristae.[7]

Ecology

Representatives of ochrophytes can be found in marine water, freshwater and soils. Some classes are more common in marine habitats, while others are more frequent in freshwater or soil.[7]

Evolution

External

The ochrophytes constitute a highly diverse clade within Stramenopila, a eukaryotic supergroup that also includes several heterotrophic lineages of protists such as oomycetes, hyphochytrids, labyrinthuleans, opalines and bicosoecids.[8][1][9] Stramenopiles, also known as heterokonts, are characterized by the presence of two flagella, one of which has hollow tripartite tubular hairs called mastigonemes, but these are secondarily lost in some groups.[1]

The total group of ochrophytes is estimated to have evolved between 874 and 543 million years ago.[10] They originated from an event of secondary endosymbiosis where a red alga was transformed into the chloroplast of the common ancestor of ochrophytes.[1][11][12]

Internal

Relationships among many classes of ochrophytes remain unresolved, but three main clades (called SI, SII and SIII) are supported in most phylogenetic analyses. The SI lineage, containing the diverse and multicellular class Phaeophyceae, or brown algae, experienced an evolutionary radiation during the late Paleozoic (around 310 million years ago). The class Schizocladiophyceae is the sister lineage to brown algae, followed by a clade of closely related classes Xanthophyceae, Phaeosacciophyceae[13] and Chrysoparadoxophyceae.[14] This is in turn the sister lineage to a clade containing Aurearenophyceae and Phaeothamniophyceae,[1] which are sometimes treated as one class Aurophyceae.[12] The Raphidophyceae are the most basal within the SI. The SII lineage contains the golden algae or Chrysophyceae, as well as smaller classes Synurophyceae, Eustigmatophyceae, Pinguiophyceae and Picophagea (also known as Synchromophyceae). Both clades, SI and SII, compose the Chrysista lineage. The remaining classes are grouped within the sister lineage Diatomista, equivalent to the SIII lineage; these are the diatoms or Bacillariophyceae, Bolidophyceae, Dictyochophyceae (including the silicoflagellates) and Pelagophyceae.[1] A new class of algae, Olisthodiscophyceae, was described in 2021 and recovered as part of the SII lineage.[2]

The cladogram below shows the evolutionary relationships between all ochrophyte classes, based on the latest phylogenetic analyses,[15][12][13][2] and the approximate number of species in each class.[1]

Ochrophyta
Chrysista
SI

Xanthophyceae (694)

Chrysoparadoxophyceae (1)

Phaeosacciophyceae (4)[13]

Schizocladiophyceae (1)

Phaeophyceae (brown algae, 2,051)

Aurearenophyceae (1)

Phaeothamniophyceae (31)

Raphidophyceae

?

Actinophryida

SII

Olisthodiscophyceae (2)[2]

Chrysophyceae (golden algae, 737)

Synurophyceae (412)

Synchromophyceae/Picophagea (7)

Eustigmatophyceae (107)

Pinguiophyceae (5)

Diatomista

Dictyochophyceae (136)

Pelagophyceae (25)

Bolidophyceae (18)

Diatomeae (diatoms, 16,012)

SIII
?

Actinophryida

Pseudofungi

One group of heterotrophic heliozoan protists, Actinophryida,[16] is included in some classifications as the sister lineage to the raphidophytes, and both groups are treated as one class Raphidomonadea on the basis of 18S rDNA phylogenetic analyses.[17] However, a recent phylogenomic study places one actinophryid, Actinophrys sol, as the probable sister group to ochrophytes.[18]

Classification

Hierarchical

In hierarchical classifications, where taxonomic ranks (kingdom, phylum, class, order...) are utilized, the ochrophytes are commonly regarded as an entire phylum (or division in botanical nomenclature) by the name of Ochrophyta, within the Stramenopila or Heterokonta.[8] The phylum was first described by protozoologist Thomas Cavalier-Smith in 1986.[19] It remained as a phylum-level taxon until 2018, when the same author lowered it to subphylum level and modified the name to Ochrophytina to match the -phytina suffix in botanical nomenclature, which corresponds to subdivisions. The phylum to which ochrophytes belong in his classification system is Gyrista, a clade that also contains some heterotrophic stramenopiles, namely the Pseudofungi and the Bigyromonada.[12] Gyrista and Bigyra compose the two main branches of stramenopiles, which are regarded as the superphylum Heterokonta within the kingdom Chromista. However, this classification system is in disuse, due to the non-monophyletic nature of the kingdom.[9]

  • Kingdom "Chromista" Cavalier-Smith 1981
    • Subkingdom "Hacrobia" Cavalier-Smith 2010
    • Subkingdom Harosa Cavalier-Smith 2010 (=TSAR supergroup)
      • Infrakingdom Rhizaria Cavalier-Smith 2002 emend. 2003
      • Infrakingdom Halvaria Cavalier-Smith 2013
        • Superphylum Alveolata Cavalier-Smith 1991 stat. nov. 2013
        • Superphylum Heterokonta Cavalier-Smith 1981 (=Stramenopiles)
          • Phylum Gyrista Cavalier-Smith 1998 stat. nov. 2018
            • Subphylum Ochrophytina Cavalier-Smith 1986

Cladistic

As opposed to the hierarchical classification, the cladistic classification only recognizes clades as valid groups, rejecting the use of paraphyletic or polyphyletic groups. This method of classification is preferred among protistologists. The latest revision of the International Society of Protistologists, in 2019, recognizes Ochrophyta as a valid taxon within the higher Stramenopiles group, within the SAR supergroup.[9]

Below is the present classification of ochrophytes according to the most recent revision of 2019,[9] with the inclusion of three new classes of algae described in posterior years.[14][13][2] The subdivision of ochrophytes between Chrysista and Diatomista is fully accepted by the scientific community and backed up by phylogenetic analyses.[9] According to this revision, the diatoms (Diatomeae) do not form a single class Bacillariophyceae. Instead, they are divided into numerous classes of new description, to reflect the phylogenetic advances over the previous decade.[9]

  • Chrysista Cavalier-Smith 1986
  • Diatomista Derelle et al. 2016, emend. Cavalier-Smith 2017
    • Dictyochophyceae Silva 1980
    • Pelagophyceae Andersen & Saunders 1993
    • Pinguiophyceae Kawachi et al. 2003
    • Bolidophyceae Guillou et al. 1999
    • Diatomeae Dumortier 1821 (=Bacillariophyta Haeckel 1878)
      • Leptocylindrophytina D.G. Mann in Adl et al. 2019
        • Leptocylindrophyceae D.G. Mann in Adl et al. 2019
        • Corethrophyceae D.G. Mann in Adl et al. 2019
      • Ellerbeckiophytina D.G. Mann in Adl et al. 2019
      • Probosciophytina D.G. Mann in Adl et al. 2019
      • Melosirophytina Medlin & Kaczmarska 2004, emend. Adl et al. 2019
      • Coscinodiscophytina D.G. Mann in Adl et al. 2019
      • Rhizosoleniophytina D.G. Mann in Adl et al. 2019
      • Arachnoidiscophytina D.G. Mann in Adl et al. 2019
      • Bacillariophytina Medlin & Kaczmarska 2004, emend. Adl et al. 2019
        • Mediophyceae Jouse & Proshkina-Lavrenko in Medlin & Kaczmarska 2004
        • Biddulphiophyceae D.G. Mann in Adl et al. 2019
        • Bacillariophyceae Haeckel 1878, emend. Adl et al. 2019

References

  1. 1 2 3 4 5 6 7 Bringloe TT, Starko S, Wade RM, Vieira C, Kawai H, De Clerck O, Cock JM, Coelho SM, Destombe C, Valero M, Neiva J, Pearson GA, Faugeron S, Serrão EA, Verbruggen H (2020). "Phylogeny and Evolution of the Brown Algae". Critical Reviews in Plant Sciences. 39 (4): 281–321. doi:10.1080/07352689.2020.1787679.
  2. 1 2 3 4 5 6 Dovilė Barcytė; Wenche Eikrem; Anette Engesmo; Sergio Seoane; Jens Wohlmann; Aleš Horák; Tatiana Yurchenko; Marek Eliáš (2 March 2021). "Olisthodiscus represents a new class of Ochrophyta". Journal of Phycology. 57 (4): 1094–1118. doi:10.1111/jpy.13155. hdl:10852/86515. PMID 33655496.
  3. Cavalier-Smith, T. (1986). The kingdom Chromista, origin and systematics. In: Round, F.E. and Chapman, D.J. (eds.). Progress in Phycological Research. 4: 309–347.
  4. Reviers, B. de. (2006). Biologia e Filogenia das Algas. Editora Artmed, Porto Alegre, p. 157.
  5. Reviers, B. de. (2006). Biologia e Filogenia das Algas. Editora Artmed, Porto Alegre, pp. 15-16.
  6. 1 2 3 Lee RE (2018). Phycology (5th ed.). Cambridge University Press. doi:10.1017/9781316407219. ISBN 978-1-107-55565-5.
  7. 1 2 3 4 5 6 7 8 9 Graham LE, Graham JM, Wilcox LW, Cook ME (2022). "Photosynthetic Stramenopiles I: Introduction to Photosynthetic Stramenopiles". Algae (4th ed.). LJLM Press. pp. 12-2–12-4. ISBN 978-0-9863935-4-9.
  8. 1 2 Ingvild Riisberga; Russell J. S. Orr; Ragnhild Kluge; Kamran Shalchian-Tabrizi; Holly A. Bowers; Vishwanath Patil; Bente Edvardsen; Kjetill S. Jakobsen (2009). "Seven gene phylogeny of heterokonts". Protist. 160 (2): 191–204. doi:10.1016/j.protis.2008.11.004. PMID 19213601.
  9. 1 2 3 4 5 6 Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. (2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
  10. Brown JW, Sorhannus U (2010). "A Molecular Genetic Timescale for the Diversification of Autotrophic Stramenopiles (Ochrophyta): Substantive Underestimation of Putative Fossil Ages". PLoS ONE. 5 (9): e12759. doi:10.1371/journal.pone.0012759.
  11. Ševčíková T, Horák A, Klimeš V, et al. (2015). "Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?". Sci Rep. 5: 10134. Bibcode:2015NatSR...510134S. doi:10.1038/srep10134. PMC 4603697. PMID 26017773.
  12. 1 2 3 4 Cavalier-Smith, Thomas (2018). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255 (1): 297–357. doi:10.1007/s00709-017-1147-3. PMC 5756292. PMID 28875267.
  13. 1 2 3 4 5 Graf L, Yang EC, Han KY, Küpper FC, Benes KM, Oyadomari JK, Herbert RJH, Verbruggen H, Wetherbee R, Andersen RA, Yoon HS (December 2020). "Multigene Phylogeny, Morphological Observation and Re-examination of the Literature Lead to the Description of the Phaeosacciophyceae Classis Nova and Four New Species of the Heterokontophyta SI Clade". Protist. 171 (6): 125781. doi:10.1016/j.protis.2020.125781. PMID 33278705. S2CID 227315556.
  14. 1 2 3 Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, van de Meene A, Crawford S, Verbruggen H (April 2019). "The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes". J Phycol. 55 (2): 257–278. doi:10.1111/jpy.12822. hdl:11343/233613. PMID 30536815. S2CID 54477112.
  15. Derelle R, López-García P, Timpano H, Moreira D (November 2016). "A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts)". Mol Biol Evol. 33 (11): 2890–2898. doi:10.1093/molbev/msw168. PMC 5482393. PMID 27512113.
  16. Mikrjukov, Kirill A.; Patterson, David J. (2001). "Taxonomy and phylogeny of Heliozoa. III. Actinophryids" (PDF). Acta Protozoologica. 40: 3–25.
  17. Cavalier-Smith, Thomas; Scoble, Josephine Margaret (2012). "Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes". European Journal of Protistology. 49 (3): 328–353. doi:10.1016/j.ejop.2012.09.002. PMID 23219323.
  18. Azuma, Tomonori; Pánek, Tomáš; Tice, Alexander K.; Kayama, Motoki; Kobayashi, Mayumi; Miyashita, Hideaki; Suzaki, Toshinobu; Yabuki, Akinori; Brown, Matthew W.; Kamikawa, Ryoma (10 April 2022). "An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis". Molecular Biology and Evolution. 39 (4). doi:10.1093/molbev/msac065. PMC 9004409. PMID 35348760.
  19. Thomas Cavalier-Smith & Ema E.-Y. Chao (2006). "Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista)". Journal of Molecular Evolution. 62 (4): 388–420. Bibcode:2006JMolE..62..388C. doi:10.1007/s00239-004-0353-8. PMID 16557340. S2CID 29567514.
  20. Kai A, Yoshii Y, Nakayama T, Inouye I (2008). "Aurearenophyceae classis nova, a New Class of Heterokontophyta Based on a New Marine Unicellular Alga Aurearena cruciata gen. et sp. nov. Inhabiting Sandy Beaches". Protist. 159 (3): 435–457. doi:10.1016/j.protis.2007.12.003. ISSN 1434-4610. PMID 18358776.
  21. Craig Bailey J, Bidigare RR, Christensen SJ, Andersen RA (September 1998). "Phaeothamniophyceae Classis Nova: A New Lineage of Chromophytes Based upon Photosynthetic Pigments, rbcL Sequence Analysis and Ultrastructure". Protist. 149 (3): 245–63. doi:10.1016/S1434-4610(98)70032-X. PMID 23194637.
  22. Kawai, Hiroshi; Maeba, Shunsuke; Sasaki, Hideaki; Okuda, Kazuo; Henry, Eric C. (2003). "Schizocladia ischiensis: A New Filamentous Marine Chromophyte Belonging to a New Class, Schizocladiophyceae". Protist. 154 (2): 211–228. doi:10.1078/143446103322166518. ISSN 1434-4610. PMID 13677449.
  23. Hibberd DJ (February 1981). "Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae)". Botanical Journal of the Linnean Society. 82 (2): 93–119. doi:10.1111/j.1095-8339.1981.tb00954.x.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.