Problem 1
| Suppose that is a uniformly continous function. Show that | 
Solution 1
L^1 implies integral of tail end of function goes to zero
Assume Not
Suppose . Then,
or
Without loss of generality,  we can assume the first one, i.e.,  (see remark below to see why this)
Note that   can be written as
Then, the negation of the above statement gives
Apply Uniform Continuity
Because of the uniform continuity, for the there is a such that
,
whenever
Then, if , by Triangle Inequality, we have
which implies
,
whenever
Construct Contradiction
Let be a number greater than . Note that and do not depend on . With this in mind, note that
Then,
which is a huge contradiction.
Therefore,
Remark If we choose to work with the assumption that , then in (*), we just need to work with
instead of the original one
Solution 1 (Alternate)
By uniform continuity, for all , there exists such that for all ,
if
Assume for the sake of contradiction there exists  such that for all , there exists  such that  and .
Let , then there exists  such that  and .
Let , then there exists  such that  and .
Let , then there exists  such that  and .
So we have  with  if  and  for all  and for all .  
In other words, we are choosing disjoint subintervals of the real line that are of length , centered around each  for , and separated by at least .
Hence, 
which contradicts the assumption that .   
Therefore, for all  there exists  such that for all , 
i.e.
Problem 3
| Suppose is absolutely continuous on , and . Show that if in addition 
 
 | 
Solution 3
By absolute continuity, Fatou's Lemma, and hypothesis we have
Hence  a.e.
From the fundamental theorem of calculus, for all , 
i.e.  is a constant .
Assume for the sake of contradiction that , then 
- .
which contradicts the hypothesis .  Hence,
i.e.  for all 
Problem 5
| Suppose that is the set of all equivalence classes of measurable functions for which | 
Problem 5a
| Show that it is a metric linear space with the metric 
 
 | 
Solution 5a
"One-half" triangle inequality
First, for all ,
Taking square roots of both sides of the inequality yields,
L^1/2 is Linear Space
Hence for all ,
Hence,  is a linear space.
L^1/2 is Metric Space
Non-negativity
Since ,
Zero Distance
Triangle Inequality
Also, for all ,
From   and  , we conclude that   is a metric space.
Problem 5b
| Show that with this metric is complete. | 
Solution 5b
For ,
By induction, we then have for all  and all 
Work with Subsequence of Cauchy Sequence
We can equivalently prove completeness by showing that a subsequence of a Cauchy sequence converges.
Claim
If a subsequence of a Cauchy sequence converges, then the Cauchy sequence converges.
Proof
Construct a subsequence
Choose such that for all ,
Setup telescoping sum
Rewrite as a telescoping sum (successive terms cancel out) i.e.
- .
The triangle inequality implies,
which means the sequence  is always dominated by the sequence on the right hand side of the inequality.
Define a sequence {g}_m
Let , then
and 
- .
In other words,  is a sequence of increasing, non-negative functions.  Note that , the limit of  as , exists since  is increasing.  ( is either a finite number  or .)
Also,
Hence, for all 
Apply Monotone Convergence Theorem
By the Monotone Convergence Theorem,
Hence,
Apply Lebesgue Dominated Convergence Theorem
From the Lebesgue dominated convergence theorem,
where the last step follows since 
Hence,
i.e.  is complete.